Alternative Tilings for the Fast Multipole Method on the Plane
نویسندگان
چکیده
The fast multipole method (FMM) performs fast approximate kernel summation to a specified tolerance ǫ by using a hierarchical division of the domain, which groups source and receiver points into regions that satisfy local separation and the well-separated pair decomposition properties. While square tilings and quadtrees are commonly used in 2D, we investigate alternative tilings and associated spatial data structures: regular hexagons (septree) and triangles (triangle-quadtree). We show that both structures satisfy separation properties for the FMM and prove their theoretical error bounds and computational costs. Empirical runtime and error analysis of our implementations are provided.
منابع مشابه
A Comparative Study of Multipole and Empirical Relations Methods for Effective Index and Dispersion Calculations of Silica-Based Photonic Crystal Fibers
In this paper, we present a solid-core Silica-based photonic crystal fiber (PCF) composed of hexagonal lattice of air-holes and calculate the effective index and chromatic dispersion of PCF for different physical parameters using the empirical relations method (ERM). These results are compared with the data obtained from the conventional multipole method (MPM). Our simulation results reveal tha...
متن کاملImproved Interpolation of Evanescent Plane Waves for Fast Multipole Methods
One way to implement a low-frequency or broadband fast multipole method is to use the spectral representation, or inhomogeneous plane-wave expansion, of the Green’s function. To significantly improve the error-controllability of the method, we propose a new interpolation and anterpolation scheme for the evanescent part. DOI: 10.2529/PIERS060907051636 The fast multipole method (FMM) can be used ...
متن کاملA faster aggregation for 3D fast evanescent wave solvers using rotations
A novel technique to accelerate the aggregation and disaggregation stages in evanescent plane wave methods is presented. The new method calculates the six plane wave radiation patterns from a multipole expansion (aggregation) and calculates the multipole expansion of an incoming field from the six plane wave incoming field patterns. It is faster than the direct approach for multipole orders lar...
متن کاملEfficient fast multipole method for low-frequency scattering
The solution of the Helmholtz and Maxwell equations using integral formulations requires to solve large complex linear systems. A direct solution of those problems using a Gauss elimination is practical only for very small systems with few unknowns. The use of an iterative method such as GMRES can reduce the computational expense. Most of the expense is then computing large complex matrix vecto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1204.3105 شماره
صفحات -
تاریخ انتشار 2012